Feature-Based Pose Estimation
نویسندگان
چکیده
In this chapter we review challenges and methodology for feature-based predictive tri-dimensional human pose reconstruction, based on image and video data. We argue that reliable 3d human pose prediction can be achieved through an alliance between image descriptors that encode multiple levels of selectivity and invariance and models that are capable to represent multiple structured solutions. For monocular systems, key to reliability is the capacity to leverage prior knowledge in order to to bias solutions not only to kinematically feasible sets, but also towards typical configurations that humans are likely to assume in everyday surroundings. In this context, we discuss several predictive methods including large-scale mixture of experts, supervised spectral latent variable models and structural support vector machines, asses the impact of the various choices of image descriptors, review open problems, and give pointers to datasets and code available online.
منابع مشابه
Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کاملاستفاده از برآورد حالتهای پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با دادههای کینکت
Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...
متن کاملSEDAI et al.: LOCALIZED FUSION OF FEATURES FOR 3D HUMAN POSE ESTIMATION 1 Localized fusion of Shape and Appearance features for 3D Human Pose Estimation
This paper presents a learning-based method for combining the shape and appearance feature types for 3D human pose estimation from single-view images. Our method is based on clustering the 3D pose space into several modular regions and learning the regressors for both feature types and their optimal fusion scenario in each region. This way the complementary information of the individual feature...
متن کاملPose estimation from multiple cameras based on Sylvester's equation
In this paper, we introduce a method to estimate the object’s pose from multiple cameras. We focus on direct estimation of the 3D object pose from 2D image sequences. Scale-Invariant Feature Transform (SIFT) is used to extract corresponding feature points from adjacent images in the video sequence. We first demonstrate that centralized pose estimation from the collection of corresponding featur...
متن کاملLocal Single-Patch Features for Pose Estimation Using the Log-Polar Transform
This paper presents a local image feature, based on the logpolar transform which renders it invariant to orientation and scale variations. It is shown that this feature can be used for pose estimation of 3D objects with unknown pose, with cluttered background and with occlusion. The proposed method is compared to a previously published one and the new feature is found to be about as good or bet...
متن کاملRobust and Accurate Vision-Based Pose Estimation Algorithm Based on Four Coplanar Feature Points
Vision-based pose estimation is an important application of machine vision. Currently, analytical and iterative methods are used to solve the object pose. The analytical solutions generally take less computation time. However, the analytical solutions are extremely susceptible to noise. The iterative solutions minimize the distance error between feature points based on 2D image pixel coordinate...
متن کامل